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Abstract. We calculate the form factors V , A1, A2 and A0 appearing in the Ds → φ transition by the light
cone QCD sum rule method. We compare our results on these form factors with the current experimental
results and existing theoretical calculations.

1 Introduction

Semileptonic decays of mesons containing charm and
beauty quarks constitute a very important class of decays
for studying the strong and weak interactions. These decay
modes of heavy flavored mesons are much clearer samples
than those of the hadronic decay modes, since leptons do
not participate in the strong interaction.

Therefore, the study of these decays is one efficient way
for determining the elements of the Cabibbo–Kobayashi–
Maskawa (CKM) matrix, as well as for understanding the
origin of CP violation which is related to the structure of
the CKM matrix in the standard model (SM).

An accurate determination of CKM matrix elements,
obviously, depends crucially on the possibility of controlling
the effects of the strong interactions. For exclusive decays,
where the initial and final states of the hadrons are known,
the main job is to calculate various transition form factors,
which involve all the long distance QCD dynamics. So,
some non-perturbative approach for estimating the long
distance effects is needed. Several methods have been used
to treat these effects, such as the quark model, QCD sum
rules, lattice theory, chiral perturbation theory, etc. Among
these approaches, the QCD sum rule method occupies a
special place, since it is based on the very first principles
of QCD.

The method of QCD sum rules [1] has been success-
fully applied to wide variety of problems of hadron physics
(see [2,3] and references therein). In this method, physical
observables of hadrons are related to the QCD vacuum via
a few condensates. The semileptonic decay D → K̄0eν̄e

was firstly studied by QCD sum rules with the 3-point
correlation function in [4]. This method, then, is success-
fully extended to the study of other semileptonic decay
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decays of the D and B mesons, i.e., D+ → K̄0e+νe, D+ →
K̄0∗e+νe [5], D → πeν̄e, D → ρeν̄e [6], B → D(D∗)�ν̄� [7]
and B → π�ν̄� [8].

However, this method inherits some problems, the main
one being that some of the form factors have a nasty be-
havior in the heavy quark limit, mQ → ∞. In order to
overcome the problems of the traditional QCD sum rules,
an alternative method, namely the light cone QCD sum
rule method (LCQSR), was developed in [9] and is regarded
as an efficient tool in studying exclusive processes which
involve the emission of a light particle.

The LCQSR is based on the operator product expansion
(OPE) near the light cone x2 ≈ 0, which is an expansion
over the twist of the operators, rather than the dimensions
as in the traditional QCD sum rules. All non-perturbative
dynamics is parameterized by the so-called light cone wave
functions, instead of the vacuum condensates in the tradi-
tional sum rules, which represents the matrix elements of
the non-local operators between the vacuum and the cor-
responding particle (more about this method can be found
in [3, 10])

The LCQSR has a wide range of applications to nu-
merous problems of hadron physics. One of the promising
ways for obtaining information about CKM matrix ele-
ments, as well as about wave functions, is studying the
semileptonic decays.

In this work we study D+
s → φ�̄ν decay in LCQSR. This

decay mode has been measured in experiments in [11–
14]. Note that the Ds → φ transition form factors are
calculated in the framework of traditional 3-pointQCDsum
rules in [15,16], but the results do not confirm each other.
Therefore we decided to calculate Ds → φ form factors
using light cone sum rules as an alternative approach to
the traditional sum rules.

This paper is organized as follows. In Sect. 2 we derive
the sum rules for the transition form factor. Section 3
is devoted to the numerical analysis and discussions and
contains a summary of our results and the conclusions.
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2 Light cone sum rules for the Ds → φ
transition form factors

The weak transition matrix element Ds → φ can be para-
metrized in terms of the form factors in the following way:

〈φ(P )|s̄γµ(1 − γ5)c|Ds(pDs)〉
= −iε∗

µ(mDs + mφ)A1(q2)

+i (pDs
+ P )µ (ε∗q)

A2(q2)
mDs + mφ

+iqµ (ε∗q)
2mφ

q2

[
A3(q2) − A0(q2)

]
+

2V (q2)
mDs

+ mφ
εµαβγε∗αqβP γ , (1)

where q = pDs − P is the momentum transfer, P and ε
are the momentum and polarization four–vectors of the φ
meson, respectively, and pDs

is the four momentum of the
Ds meson.

In this section we derive sum rules for these form factors.
In order to calculate the form factors of the semileptonic
Ds → φ�ν decay, we consider the following correlator func-
tion:

Πµ(P, q) = i
∫

d4xeiqx

×〈φ(P )T [s̄(x)γµ(1 − γ5)c(x)c̄(0)(1 − γ5)s(0)] |0〉

= Γ 0ε∗
µ − Γ+ ε∗q

Pq
(2P + q)µ − Γ− ε∗q

Pq
qµ

+iΓV εµαβγε∗αqβP γ . (2)

The Lorentz invariant functions Γ 0,±,V can be calculated
in QCD for large Euclidean p2

Ds
, or, to put it more cor-

rectly, when m2
c − p2

Ds
� 0, the correlation function (1) is

dominated by the region of small x2 and can be systemat-
ically expanded in powers of the deviation from the light
cone x2 = 0.

The main reason for choosing the chiral current c̄(1 −
γ5)s is that in this case many of the twist-3 wave functions,
which are poorly known and cause the main uncertainties
to the sum rules, can effectively be eliminated and provide
results with less uncertainties. The chiral current approach
has been applied to studying the B → π [17,18] and B →
η [19] weak form factors.

Let us discuss firstly the hadronic representation of the
correlator. This can be done by inserting the complete set
of intermediate states with the same quantum numbers as
the current operator c̄(1−γ5)s in the correlation function.
By isolating the pole term of the lowest pseudoscalar Ds

meson, we get the following representation of the correlator
function from the hadron side:

Πµ(P, q)

=
〈φ|s̄γµ(1 − γ5)c|Ds〉〈Ds|c̄(1 − γ5)s|0〉

m2
Ds

− (P + q)2

+
∑

h

〈φ|s̄γµ(1 − γ5)c|h〉〈h|c̄(1 − γ5)s|0〉
m2

h − (P + q)2
. (3)

Here, we would like to make the following remark. Due
to the chiral structure of the c̄(1 − γ5)s current, the cor-
relation function receives a contribution from the scalar
JP = 0+ Ds mesons, in addition to the pseudoscalar Ds

mesons. Recent BaBar, BELLE and CLEO data indicate
that the lowest 0+ Ds meson mass is 2.317 GeV [20]. There-
fore, the lowest pseudoscalar Ds meson, as well as the 0+ Ds

mesons, can contribute to the dispersion integral. We can
avoid the pollution from the scalar resonances by choos-
ing the continuum threshold s0 slightly below the squared
mass of the lowest scalar Ds meson.

For the invariant amplitudes Γ 0,±,V , one can write a
general dispersion relation in the p2

Ds
= (P + q)2 variable

Γ i
(
q2, (P + q)2

)
=
∫

ds
ρi(s)

s − (P + q)2
+ subtr. ,

where the spectral densities corresponding to (2) can easily
be calculated. As an illustration of this fact, we present
the result for Γ 0:

ρ(0)(s) (4)

=
fDsm

2
Ds

mc + ms
(mDs + mV )A1(q2)δ

(
s − m2

Ds

)
+ ρ(0)h(s) .

The first term in (4) represents the contribution of the
ground state Ds meson. In deriving (2), we have used

〈Ds|c̄(1 − γ5)s|0〉 = i
fDsm

2
Ds

mc + ms
.

The second term in (4) corresponds to the spectral density
of the higher resonances and continuum. The spectral den-
sity ρ(0)h(s) can be approximated by invoking the quark
hadron duality ansatz

ρ(0)h(s) = ρ(0)QCD(s − s0) .

So for the hadronic representation of the invariant ampli-
tude Γ (0) we have

Γ (0) =
fDsm

2
Ds

mc + ms

mDs + mφ

m2
Ds

− (P + q)2
A1(q2)

+
∫ ∞

s0

ds
ρ(0)QCD(s)

s − (P + q)2
+ subtr. (5)

Hadronic representations for the other invariant amplitudes
can be constructed in precisely the same manner.

In order to obtain sum rules for the form factors A1,
A2, A0 and V , we must calculate the correlator from the
QCD side. This calculation can be performed by using
the light cone OPE. The contributions to OPE can be
obtained by contracting the quark fields to a full c-quark
propagator, i.e.,

Πµ(P, q) (6)

= i
∫

d4xeiqx〈φ|s̄γµ(1 − γ5)Sc(x)(1 − γ5)s(0)|0〉
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=
i
4

∫
d4xeiqx [Tr γµ(1 − γ5)Sc(x)(1 − γ5)Γi]

×〈φ|s̄Γ is|0〉 ,

where Γ i is the full set of the Dirac matrices Γ i = (I, γ5,

γα, iγαγ5, σαβ/
√

2), and

iSc(x) = iS(0)
c (x)

−igs

∫
d4k

(2π)4
e−ikx

∫ 1

0
du

×
[

1
2

�k + mc

(m2
c − k2)2

Gµν(ux)σµν

+
1

m2
c − k2 uxµGµν(ux)γν

]
. (7)

Here, Gµν is the gluonic field strength, gs is the strong
coupling constant and S

(0)
c represents a free c-quark prop-

agator

S(0)
c (x) =

∫
d4k

(2π)4
e−ikx �k + mc

k2 − m2
c

. (8)

From (6)– (8) we see that, in order to calculate the the-
oretical part of the correlator, the matrix elements of the
non-local operators between vector φ meson and vacuum
states are needed. We see from (6) that the contribution
to the correlator comes only from the wave functions that
contain an odd number of γ matrices.

Up to twist-4, the φ meson wave functions containing an
odd number of γ matrices and appearing in our calculations
are [21]

〈φ(P, λ)|s̄(x)γµs(0)|0〉

= fφmφ [ Pµ
eλx

Px

∫ 1

0
du eiuPx

×
(

Φ‖(u, µ2) +
m2

φx2

16
A
(
u, µ2))

+
(

eλ
µ − Pµ

eλx

Px

)∫ 1

0
du eiuPxg

(v)
⊥
(
u, µ2)

− 1
2

xµ
eλx

(Px)2
m2

φ

∫ 1

0
du eiuPxC

(
u, µ2) , (9)

〈φ(P, λ)|s̄(x)γµγ5s(0)|0〉

=
1
4

(
fφ − 2fT

φ ms

mφ

)
mφε ναβ

µ eλ
νPαxβ

×
∫ 1

0
du eiuPxg

(a)
⊥
(
u, µ2) , (10)

〈φ(P, λ)|s̄(x)gGµν(ux)iγαs(0)|0〉
= fφmφpα

(
pνeλ

⊥µ − pµeλ
⊥ν

)V(u, px)

+fφm3
φ

eλx

px

(
pµg⊥

αν − pνg⊥
αµ

)
Φ(u, px)

+fφm3
φ

eλx

(px)2
pα(pµxν − pνxµ)Ψ(u, px) , (11)

〈φ(P, λ)|s̄(x)gG̃µν(ux)iγαγ5s(0)|0〉
= fφmφpα

(
pνeλ

⊥µ − pµeλ
⊥ν

) Ṽ(u, px)

+fφm3
φ

eλx

px

(
pµg⊥

αν − pνg⊥
αµ

)
Φ̃(u, px)

+fφm3
φ

eλx

px
pα(pµxν − pνxµ)Ψ̃(u, px) . (12)

In all expressions, we have used

pµ = Pµ − 1
2

xµ

m2
φ

px
,

eλ
µ =

eλx

px

(
pµ − m2

φ

2(px)
xµ

)
+ eλ

⊥µ ,

g⊥
µν = gµν − 1

px
(pµxν + pνxµ) , (13)

where Φ‖ is the leading twist-2 wave function, while g
(v)
⊥ ,

g
(a)
⊥ , V are twist-3 and all the remaining ones are twist-4

wave functions. The notation used in (11)– (14) is as follows:

K(u, Px) =
∫

DαeiPx(α1+uα3)K(α) , (14)

where

Dα = dα1dα2dα3δ(1 − α1 − α2 − α3) .

Inserting (7) and (8) into (6) and using the definitions of the
φ meson wave functions, the invariant structures Γ 0,±,V

take the following form:

Γ0 =
∫

du
2fφmφmcg

(v)
⊥ (u)

∆1
, (15)

Γ+ =
∫

du

{
fφmφmc

∆3
1

[
m2

cm
2
φA(u) + 4(Pq)∆1Φ

(i)
‖ (u)

]

− fφm3
φmcuC(u)

∆2
1

(16)

−
∫

Dα
fφm3

φmc

∆2
2

(
2Φ − 2Φ̃ + Ψ − Ψ̃ − V

2
+

Ṽ
2

)}
,

Γ− =
∫

du

{
−fφmφmc

∆3
1

[
m2

cm
2
φA(u) + 4(Pq)∆1Φ

(i)
‖ (u)

]

− fφm3
φmc(2 − u)C(u)

∆2
1

(17)

+
∫

Dα
fφm3

φmc

∆2
2

(
2Φ − 2Φ̃ + Ψ − Ψ̃ − V

2
+

Ṽ
2

)}
,
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ΓV =
∫

du

(
1 − 2fT

φ ms

fφmφ

)
g
(a)
⊥

fφmφmc

∆2
1

, (18)

where

Φ
(i)
‖ (u) =

∫ u

0
dv
[
Φ‖(v) − g

(v)
⊥ (v)

]
,

∆1 = m2
c − (q + Pu)2 ,

∆2 = m2
c − [q + (α1 + uα3)P ]2 ,

Equating the expressions of the invariant structures
Γ 0,±,V coming from QCD and the phenomenological parts
of the correlation function and making the Borel transfor-
mation with respect to (P + q)2 in both parts, in order to
suppress the contributions of higher states and continuum
and also to eliminate the subtraction terms in the disper-
sion integral, we get the following sum rules for the Ds → φ
transition form factors:

A1(q2) =
mc + ms

fDs
m2

Ds

1
mDs

+ mφ
em2

Ds
/M2

×
{

2fφmφmc

∫ 1

δ

du
g
(v)
⊥ (u)

u
e−s(u)/M2

}
, (19)

A2(q2)

=
(mc + ms)(mDs

+ mφ)
fDsm

2
Ds

2
m2

Ds
− m2

φ − q2 em2
Ds

/M2

×
{

fφmφmc

[
1
2

m2
φm2

c

∫ 1

δ

1
u

A(u)
1

2 (M2u)2
e−s(u)/M2

−
∫ 1

δ

du
1
u2 Φ

(i)
‖ (u)e−s(u)/M2

+
∫ 1

δ

du
1
u

(
m2

c − m2
φu2 − q2) Φ

(i)
‖ (u)

u2M2 e−s(u)/M2

−m2
φ

∫ 1

δ

du
uC(i)(u)
u2M2 e−s(u)/M2

]

−fφm3
φmc

∫ 1

0
du Dα θ(s0 − s(k)) × 1

k2M2

×
[
2Φ(α) − 2Φ̃(α) + Ψ(α) − Ψ̃(α)

V
2

+
Ṽ
2

]

×e−s(k)/M2

}
. (20)

The form factor A3(q2) can be obtained from the ex-
act result

A3(q2) =
mDs + mφ

2mφ
A1(q2) − mDs − mφ

2mφ
A2(q2) , (21)

and A0(q2) can be calculated from the following sum rule:

A3(q2) − A0(q2)

=
mc + ms

fDsm
2
Ds

q2

2mφ

1
m2

Ds
− m2

φ − q2 em2
Ds

/M2

×
{

fφmφmc

[
− 1

4
m2

φm2
c

∫ 1

δ

1
u

A(u)
1

2 (M2u)2
e−s(u)/M2

+
∫ 1

δ

du
1
u2 Φ

(i)
‖ (u)e−s(u)/M2

−
∫ 1

δ

du
1
u

(
m2

c − m2
φu2 − q2) Φ

(i)
‖ (u)

u2M2 e−s(u)/M2

−m2
φ

∫ 1

δ

du
(2 − u)C(i)(u)

u2M2 e−s(u)/M2

]

+fφm3
φmc

∫ 1

0
du Dα θ(s0 − s(k))

1
k2M2

×
[
2Φ(α) − 2Φ̃(α) + Ψ(α) − Ψ̃(α) − V

2
+

Ṽ
2

]

×e−s(k)/M2

}
, (22)

V (q2) =
(mDs + mφ)(mc + ms)

2fDsm
2
Ds

em2
Ds

/M2

×
{(

1 − 2msf
T
φ

fφmφ

)
fφmφmc

×
∫ 1

δ

du g
(a)
⊥ (u)

1
u2M2 e−s(u)/M2

}
, (23)

where M2 is the Borel parameter and

s(t) =
m2

c − q2t̄ + m2
φtt̄

t
,

t =

{
u , or

k = α1 + uα3 ,

t̄ = 1 − t ,

δ =
1

2m2
φ

[(
m2

φ + q2 − s0
)

+

√(
s0 − m2

φ − q2
)2

− 4m2
φ (q2 − m2

c)

]
.

3 Numerical analysis

In this section we present our numerical calculation of the
form factors A1, A2, A0 and V . As can easily be seen from
the expressions of these form factors, themain input param-
eters are the φ meson wave functions, whose explicit forms
are given in [21] and that we use in our study. The values
of the other input parameters appearing in the sum rules
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Table 1. Comparison of our results for the form factors at
q2 = 0 with the results of [15,16]

Our result [15] [16]
A1(0) 0.54 ± 0.09 0.55 ± 0.15 0.37 ± 0.05
A2(0) 0.57 ± 0.12 0.59 ± 0.17 −0.40 ± 0.03
A3(0) = A(0) 0.53 ± 0.09 0.53 ± 0.12 0.73 ± 0.06
V (0) 0.7 ± 0.1 1.21 ± 0.33 0.80 ± 0.09

for the form factors are mDs
= 1.9686 GeV, ms(1 GeV) =

(0.14 ± 0.02) GeV, mc(1 GeV) = (1.42 ± 0.03) GeV, fDs
=

(0.214± 0.038) GeV [3], and mφ = 1.02 GeV. The leptonic
decay constant of the φ meson, which is fφ = 0.234 GeV,
is extracted from the experimental result of the φ → �+�−
decay [22]. As has already been noted, in order to avoid
contributions of the scalar mesons, the threshold parame-
ter s0 in the dispersion integral must be chosen near the
squared mass of the lowest scalar meson. Therefore, in
our further numerical analysis, we use s0 = 5.0 GeV2 and
s0 = 5.3 GeV2, both of which are slightly lower than the
mass square of the scalar meson.

With the above-mentioned input parameters, we now
proceed by carrying out our numerical analysis. The first
step, according to the sum rule philosophy, is to look for a
working region of the auxiliary Borel parameter M2, where
numerical results should be stable for a given threshold s0.
The lower limit of M2 is determined by the condition that
the terms M−2n (n > 1) remain subdominant. The upper
bound of M2 is determined by requiring that the continuum
and higher state contributions constitute a maximum 30%
of the total result. Our numerical analysis shows that both
requirements are satisfied in the region 3 GeV2 ≤ M2 ≤
4.5 GeV2. We should note that LCQSR for the form factors
are reliable in the region q2 � 0.4 GeV2. Moreover, we
analyze the M2 dependencies of the form factors A1, A2, A0
and V at q2 = 0 GeV2 and q2 = 0.2 GeV2 for two different
values of the continuum threshold, namely s0 = 5.0 and
s0 = 5.3 GeV2. Our analysis shows that the form factors
are practically independent of the Borel mass when M2

varies between 3 GeV2 and 4 GeV2. The variation of the
form factors in relation to the continuum threshold is also
very weak. The results for all form factors change about
5% at q2 = 0. Our final results for the form factors at
q2 = 0 and s0 = 5.3 GeV2 are presented in Table 1. For a
comparison, the results of [15,16] on the same form factors
are also listed in this table.

From this table we see that, except for the value of
V (0), our results are close to the predictions of [15], while
they differ from those given in [16]. Moreover, the sign of
A2(0) in our case is different compared to that obtained
in [16].

A few words about the magnitude of SU(3) violation
in the form factors of the Ds → φ and D → ρ transitions
are in order. The form factors of the D → ρ transition
are calculated in [23], having the values A1(0) 
 0.55,
A2(0) 
 0.6 and V (0) 
 0.9 at q2 = 0. When we compare
these results with ours, we observe that the violation due

Table 2. Parameters of the form factors given in (24), for the
Ds decay in a three-parameter fit. We take the central values
of the form factors for F (0)

F (0) aF bF

A1 0.54 1.57 0.16
A2 0.57 4.7 5.96
A0 0.53 0.64 2.13
V 0.64 2.81 1.34

to SU(3) is quite small for A1(0) and A2(0), while it is
about 20% smaller for V (0) (for central values).

It should be noted that in the region q2 ≥ 0.4 GeV2 the
applicability of the light coneQCDsumrule is questionable.
In order to extend our results to the full physical region, we
look for a parameterization of the form factors in such a way
that in the region 0 ≤ q2 ≤ 0.4 GeV2, the above-mentioned
parameterization coincides with the light cone QCD sum
rules prediction. The most convenient parameterization of
the q2 dependence of the form factors is given in terms of
three parameters in the following form:

Fi(q2) =
Fi(0)

1 − aFi

(
q2/m2

Ds

)
+ bFi

(
q2/m2

Ds

)2 . (24)

The values of the parameters Fi(0), aFi and bFi are listed
in Table 2.

We proceed by discussing the uncertainties related to
the input parameters and wave functions. We note first
that the radiative corrections to the leading twist-2 func-
tion, which is calculated in [20], is about ∼ 10%. As has
already been noted, the results depend weakly on the con-
tinuum threshold s0 and the Borel parameter M2, and
the uncertainty due to these parameters is about 5%–7%
in the working region of M2. Moreover, the results are
also quite weakly dependent on the vector meson decay
constant fφ and fT

φ , which results in an uncertainty of
about 5%. The additional uncertainties coming from the
Gegenbauer moments are about ∼ 10%. Summing all these
above-mentioned errors, the overall uncertainty in the val-
ues of the form factors is of the order of 17%.

A few words about the parameterization of the form
factors, given in (24), are in order. In principle, one can
use the meson pole-dominance approximation in the pa-
rameterization of the form factors, which works good at
large q2 ∼ (mDs − mφ)2 and with the form factors being
expressed as

Fi(q2) =
Fi(0)

1 − q2/m2
i

.

However, it is not obvious at all that the meson-dominance
model gives reliable results at low q2. On the other hand, it
is well known that the QCD sum rules prediction works very
well at low q2. So, one can use both parameterizations in
the following way: match both representations of the form
factors ((24) and the pole form) and treat Fi(0) as the fit
parameter, and further require that at some value q2 = q2

0
to be fitted, the values of Fi(q2 = q2

0) and their derivatives
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Table 3. Comparison of our results for r1 and r2 with the
experimental results and the 3-point sum rule

r1 r2

Focus [24] 1.549 ± 0.250 0.713 ± 0.202 ± 0.266
E791 [14] 2.27 ± 0.35 ± 0.22 1.57 ± 0.25 ± 0.19
CLEO [13] 0.9 ± 0.6 ± 0.3 1.4 ± 0.5 ± 0.3
E687 [12] 1.8 ± 0.9 ± 0.2 1.1 ± 0.8 ± 0.1
E653 [11] 2.3+1.1

−0.9 ± 0.4 2.1+0.6
−0.5 ± 0.2

Average 1.92 ± 0.32 1.60 ± 0.24
3PSR [15] 2.20 ± 0.85 1.16 ± 0.46
3PSR [16] 2.16 ± 0.38 −1.08 ± 0.17
Our results 1.19 ± 0.23 1.06 ± 0.24

are equal in both parameterizations. After carrying out
this procedure, one can use both parameterizations, i.e.,
one can use (24) for q2 < q2

0 and the pole form for q2 > q2
0 .

In the experiments, the ratios

r1 =
V (0)
A1(0)

and r2 =
A2(0)
A1(0)

are measured. In the present work, within the framework of
the light cone QCD sum rules, we get r1 = 1.19±0.23 and
r2 = 1.06 ± 0.24. In Table 3, we present a comparison of
our results with the existing experimental data and 3-point
sum rule (3PSR).

Using the parameterization of the Ds → φ transition in
terms of the form factors A1, A2, V , A3−A0, the differential
decay width as a function of q2 in terms of the helicity
amplitudes can be written as

dΓ

dq2 =
G2

F |Vcs|2
192π3m3

Ds

λ1/2 (m2
Ds

, m2
φ, q2) q2 [H2

0 + H2
+ + H2

−
]

≡ dΓL

dq2 +
dΓ+

dq2 +
dΓ−
dq2 , (25)

where the indices in dΓi/dq2 and Hi denote the polarization

of the φ meson, λ
(
m2

Ds
, m2

φ, q2
)

=
(
m2

Ds
+ m2

φ − q2
)2

−
4m2

Ds
m2

φ, and

H± = (mDs + mφ)A1(q2) ∓
λ1/2

(
m2

Ds
, m2

φ, q2
)

mDs
+ mφ

V (q2) ,

(26)

H0 =
1

2mφ

√
q2

×
(m2

Ds
− m2

φ − q2) (mDs + mφ)A1(q2)

−
λ
(
m2

Ds
, m2

φ, q2
)

mDs + mφ
A2(q2)

 . (27)

The differential decay rate when the final state φ meson
is transversally polarized is determined to be

dΓT

dq2 =
dΓ+

dq2 +
dΓ−
dq2 . (28)

Integrating the differential decay widths over q2 in the
region from q2 = 0 to (mDs

− mφ)2, we obtain

ΓL =
(
1.31−0.13

+0.10

)× 10−14 GeV ,

ΓT =
(
1.57−0.28

+0.27

)× 10−14 GeV ,

and for their ratio we get

ΓL

ΓT
= (0.8 ± 0.1) ,

which is in good agreement with the existing experimen-
tal data, (

ΓL

ΓT

)
exp

= 0.72 ± 0.16 [22] .

Using the value of the total decay width ΓDs = 1.34 ×
10−12 GeV [22] of the Ds meson, we get the following result
for the branching ratio of the Ds → φ�̄ν decay:

B (Ds → φ�̄ν
)

=
(
2.15−0.31

+0.27

)
% ,

which is consistent with the experimental result

B (Ds → φ�̄ν
)
exp = (2.0 ± 0.5) % .

In conclusion,we calculate the form factors for theDs →
φ transition, in the framework of the light cone QCD sum
rules. We compare our results for the form factors with the
existing calculations based on 3-point sum rules. Following
this analysis, we then estimate the ratios of these form
factors and compare them with the current experimental
data, as well as with the existing theoretical calculations.
Finally, we study the ratio ΓL/ΓT of the decay widths when
the φ meson is longitudinally and transversally polarized,
and the branching ratio. Our calculations on the above-
mentioned quantities confirm that they are consistent with
the existing experimental data.
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19. T.M. Aliev, İ.Kanık, A. Özpineci, Phys. Rev. D 67, 094009

(2003)
20. B. Aubert et al., BaBar Collaboration, Phys. Rev. Lett.

90, 242001 (2003); D. Besson et al., CLEO Collaboration,
Phys. Rev. D 68, 032002 (2003); Y. Mikami et al., BELLE
Collaboration, Phys. Rev. Lett. 92, 012002 (2004)

21. P. Ball, V.M. Braun, Phys. Rev. D 58, 094016 (1998)
22. Particle Data Group, K. Hagiwara et al., Phys. Rev. D 66,

010001 (2002)
23. P. Ball, V.M. Braun, Phys. Rev. D 55, 5561 (1997)
24. J.M. Link et al., Focus Collaboration, Phys. Lett. B 586,

183 (2004)


